Featured Post

Proof that Aleph Zero Equals Aleph One, Etc.

ABSTRACT: According to the current dogma, Aleph-0 is less than Aleph-1, but is there evidence to the contrary? Is it really true that ...

Monday, September 18, 2017

Deriving the Fourier Transform

In the field of quantum mechanics the Fourier transform shows the relationship between momentum/wave-number space, phi(k), and position space psi(x). Equations 1 and 2 below are a typical example of this relationship:

Let's see if we can derive equations 1 and 2 from scratch. We start with perhaps the simplest transforms:

At equation 3 above, we make the right side a function of x by multiplying by e^ikx. If we multiply both sides by e^-ikx, we get equation 4 and equation 4's right side transforms from a function of x to a function of k.

Next, we take equation 3 and find the integral of both sides with respect to k:

We solve the integral on the left side first.

It looks like we are going to get infinity. Darn! We want something finite. Here's what we are dealing with: Imagine a line segment with point zero at the center. The furthest point to the right is an infinite number of points from point zero. Going to the left, there are a minus infinite number of points.

Suppose we bend the line segment into a half circle like this:

We deduce that pi/2 radians is equivalent to an infinite number of points.

We take the square root of both sides of 7 to get 8:

It is most convenient that the square root of infinity is still infinity and the square root of pi/2 radians is still equivalent to an infinite number of points from zero to (pi/2)^.5. To make the math less cluttered we do the following:

Using some high-school algebra we derive equation 14 below:

By repeating the steps above we derive equation 2 (aka: equation 24):

No comments:

Post a Comment