Tuesday, October 23, 2018

How Entropy, Temperature and Chemical Reactions Impact Time Dilation

How do we measure time? Normally we take some event that happens over and over again, and, we assign it a time unit. For example, the complete rotation of the earth we call a day. We can take that time unit (or any fraction thereof) and assign it to other events--that may or may not be periodic--such as a chemical reaction, for instance. We say the chemical reaction happened in time t.

What if that chemical reaction were to slow down? Can we say its rate of time has slowed? If we define time as the rate of change, then the change in the rate of chemical reactions, entropy, or the earth's rotation would indeed impact the rate of time.

Consider the famous twin paradox, where one twin boards a rocket that hurls him into outer space close to light speed. According to Einstein, his time slows, he ages more slowly than his twin back on earth. His body's biochemical reactions are slower, entropy is reduced--at least that is the implication.

When he arrives back on earth, he will be younger than his twin brother. But his twin has a plan: while he's out in space, his twin cryogenically freezes himself. His twin will be thawed out by the time he gets back to earth. If his twin's plan works, they will both be the same age. Now, did the twin on earth reduce his time rate? Can the rate of time be reduced by means other than high velocities and mass density? This post shall address these questions, but first, let's define the variables we will use:

Let's start with entropy. If we somehow reduce the rate of entropy, will the time rate also be reduced?

If we take the Boltzmann constant (which has entropy units) and multiply it by the unit-less Lorentz factor's squared reciprocal, we derive equation 2 below:

Equation 2 shows that entropy is reduced when velocity (v) is increased. The time rate is also reduced. So far it appears we have a correlation between entropy and time. If equation 2 is valid, we should be able to use it to derive a more standard entropy equation:

Equation 6 above confirms the validity of equation 2. So we can say the twin in outer space, traveling near light speed, has reduced his entropy. Now the twin on earth wants to freeze himself, i.e., lower his body's temperature. Will this reduce his entropy? Equation 8 below confirms that it will. From 8 we derive equation 12 which shows lowering the temperature (T) reduces the time rate.

According to equation 12, the twin on earth will age more slowly. Does this imply the rate of his body's biochemical reactions will slow down?

Equation 13 is the Arrhenius equation, where k is the rate of a chemical reaction. When temperature T is reduced, so is the rate of the chemical reaction. From 13 we derive a new entropy equation at 19:

Equation 19 tells us that when the rate of a chemical reaction is reduced, so is entropy. And the reduced chemical-reaction rate reduces the rate of time:

So the age difference between the twins could be nil when the space twin arrives back on earth. If the earth twin cryogenically freezes himself, he may be younger than the space twin. Both twins have found a way to reduce their respective time rates, they have found ways to time travel into the future. Here are four ways to reduce the time rate:

1 comment:

  1. i don't have time to read that but from my skim there are similar ideas going back to 1970's or before in physics literature.

    ReplyDelete