Featured Post

Why Different Infinities Are Really Equal

ABSTRACT: Assuming different infinities are unequal leads to strange and counter-intuitive mathematical results such as Ramanujan's ...

Tuesday, June 11, 2019

A Perturbation Theory Proof

To prove the validity of the perturbation expansion, let's start with a simple and obvious statement:

It seems intuitive that a variable x can be the sum of two terms containing two new variables. In fact, the same can be said of variable a1:

And, a2 can be the sum of two terms containing two new variables. We can repeat this exercise as many times as we like until we reach a(sub-n):

Using equations 2 through 5 we make a series of substitutions which transform equation 1 into the familiar perturbation expansion:

However, equation 6 is an exact solution which can't be had unless we know the value of a(sub-n). Let's assume we don't. Let's eliminate a(sub-n). If we do, we get an approximate solution:

Now, how do we apply this approximate series known as a perturbation series? Consider a function of x:

Let's assume this function of x is too hard to solve. So we re-write f(x) above to show the easy, solvable part and the seemingly unsolvable part:

Let's suppose the hard part is g(x). Wouldn't it be great if we could just get rid of it? Not permanently. Just for the time being. We do away with g(x) by multiplying it by epsilon, and epsilon has a zero limit.

We end up with equation 12 which is easy to solve. The solution can be found at 13. However, we didn't solve variable x--we solved what is called an unperturbed x or x0. We can now plug that solution into equation 7 and equation 8. Because x is approximately equal to x0 plus the rest of the series, we can make a substitution at equation 11 to get the following:

At 15 we set the equation to zero. The idea here is to solve the xi coefficients. This is often done by grouping terms on the basis of their epsilon powers. The equation is broken up into smaller, simpler equations that are easy to solve. At 18 below, the solved coefficients are plugged into the series and epsilon is set back to 1 (giving us back the equivalent to the missing hard part of the original equation). At 19 and 20 we simply add up the coefficients to get a close approximation of the true value of x.

Since the intent of this post was to do a general proof of perturbation theory, no specific problem-solving examples were provided. Click here to see an example of a specific problem solved using perturbation theory.

1 comment:

  1. I was reading and found,"the gravitons are not rigorously consistent with Spacetime curvature." I knew the wavelength would contract with space and time dilation differences of potentials across the LIGO arms is the reason for the changing interference. Also it seems to be a bootstrap model, as effecting the curvature of space it moves through. Eddington said they would move at infinite velocity, like action at a distance, really left unaddressed. Energy loss in the Hulse-Taylor pulsar was indirect evidence. I heard others having this result. Now I'm very impressed that GM Jackson's fairly short lines of tensor equations came up with this! Hat's off to him from me. Putoff derives inverse square law for the Casmir or van Der Walls forces which seem hard or impossible to separate. S. Carlip challenged the derivation and H. E. Putoff responded but the theory remains incomplete.

    ReplyDelete